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Abstract

A simple constitutive model based on the non-Gaussian, Kuhn–Grün probability distribution function is derived. It is assumed that the actual

macromolecular structure of a rubber-like material can be replaced by idealized equilateral tetrahedra cells that are not mutually exclusive so far as

occupancy of the space is concerned. The three chains are assumed to meet at a junction point located at the centroid of the cell with their other

ends being fixed at the vertices of the equilateral tetrahedron. The centroid junction point is free to fluctuate, subject to the constraint imposed by

the equilibrium of chain forces. Stress–stretch constitutive equations are then derived to study homogeneous deformations of isotropic,

incompressible hyperelastic rubber like materials. The accuracy of the derived constitutive equations is demonstrated by using uniaxial,

equibiaxial, pure shear, and plane strain experimental data provided in the literature.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A major objective of this work is to develop a constitutive

material network model to predict the state of deformation of

incompressible rubber-like materials under different types of

deformation states. This model is based on the statistical theory

of networks of non-Gaussian flexible chains and it is assumed

that the actual macromolecular structure of a rubber material

can be replaced by idealized equilateral tetrahedra in which all

the chains are of the same contour length and are connected at

junction points which in rubber-like materials are provided by

the chemical cross-links between macromolecules. The

concept of idealized regular tetrahedra cells as a representative

unit of the actual network structure was introduced by Flory

and Rehner on their treatment of cross-linked polymer

networks [1,2]. There, they assumed that the properties of the

material network can be computed from those of a tetrahedron

cell and that the most probable position of the four nearest

neighbor cross-linkages lie at the corners of the tetrahedron.

Wang and Guth [3] based on James–Guth non-Gaussian theory

found that the tetrahedron network is not isotropic for all

orientation of the axes.
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Arruda and Boyce developed a non-Gaussian constitutive

model that is highly accurate in predicting experimental results

[4]. This model is based on a network of eight chains which

possesses the cubic symmetry of principal stretch space as it

averages eight orientations of that space in determining the

network response. However, Yeoh and Fleming [5] noted that

Arruda–Boyce and Flory–Rehner models yield identical

expressions for the strain energy function since the former

may be envisioned to consist basically of two tetrahedral cells

as illustrated in Fig. 1. Hence, the Flory–Rehner and the

Arruda–Boyce models possess the same features although they

differ in their topology.

Others non-Gaussian network models proposed by several

researchers to predict the mechanical response of rubber-like

materials can be found in the literature. See Flory and Rehner

[1], Wang and Guth [3], Arruda and Boyce [4], Treloar [6], Wu

and van Der Giessen [7], and Dorfmann and Muhr [8] for an

overview of the main features of these network models. Very

recently, Beatty determined the squared chain stretch of an

arbitrarily directed chain averaged over a unit sphere

surrounding all chains radiating from a cross-link junction as

its center by using an average-stretch, full-network approxi-

mation [9]. He used this result to obtain from the Kuhn–Grün

probability distribution function an approximate total strain

energy function for a uniform full-network model that led to

the same constitutive equations for the Flory–Rehner and

Arruda–Boyce models in which no specific chain cell

morphology is required.
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Fig. 1. Regular tetrahedral cells and the eight-chain network model.

Fig. 2. Undeformed equilateral tetrahedron cell with the junction point located

on its centroid.
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Here, the formulation of a new constitutive model based on

non-Gaussian statistical theory is investigated by assuming that

the actual macromolecular structure of a rubber material can be

replaced by idealized equilateral tetrahedra cells that are not

mutually exclusive so far as occupancy of the space is

concerned [1,2]. We introduce a network whose junction

point is located at the centroid of an equilateral tetrahedron that

is allowed to take up all possible positions and then we derive

its stress–stretch constitutive equations for different defor-

mation states.

We shall begin with a brief review of the non-Gaussian

work of deformation of perfectly flexible jointed chains.

2. Non-Gaussian work of deformation

It is well-known that the non-Gaussian theory leads to a

more realistic molecular distribution function valid over the

whole range of r-values up to the ultimate, or fully extended

length [3,10,11]. In this theory, the maximum chain extensi-

bility is taken to be proportional to the square root of the

number N of random links in a chain of length l. According to

Khun and Grün [10], the configurational entropy for the

distribution function of a stretch chain of current length r is

given by

S Z k cKN
br

Nl
C ln

b

sinh b

� �� �� �
; (1)

where c is a constant, k is Boltzmann’s constant, and bZ
LK1½r=ðNlÞ� is the inverse Langevin function LðbÞ defined by

r

Nl
Z LðbÞhcoth bK

1

b
(2)

Some amendments to Eq. (1) were introduced by Jerningan

and Flory [12] to account for the uniform distribution of the

chain end-to-end vector r. Numerical calculations of these

modifications on the configurational entropy value for different

deformation states and chain number of links N were

performed by Jerningan and Flory [12] and Elı́as-Zúñiga and

Beatty [13]. In accordance with kinetic theory, we assume that

there is no change of internal energy on deformation, so the

Helmholtz free energy per unit volume is given by

W ZKQS; (3)
in which W represents the chain work of deformation or

elastically stored free energy per unit volume of the rubber

material, and Q is the absolute temperature. Thus, the work of

deformation is given by

W Z nkQ N
br

Nl
C ln

b

sinh b

� �� �
Kc�

� �
; (4)

in which the constant c* is chosen so that the strain energy

vanishes in the undeformed state and n is the chain density.

Hence, the principal Cauchy stresses Ti of an incompressible

material may be determined from the strain–energy function as

Ti Z li

vW

vli

Kp; (5)

where li, are the principal stretches that satisfy the

incompressibility constraint l1l2l3Z1, and the pressure p is

an arbitrary hydrostatic stress that may be eliminated by

forming the difference

TjKTk Z lj

vW

vlj

Klk

vW

vlk

; jsk Z 1; 2; 3 ðno sumÞ (6)

Based on the above equations, we next consider the theoretical

development of a new non-Gaussian network model.
3. The equilateral tetrahedron model

This model is based on an equilateral tetrahedron cell that is

assumed to have three chains initially of the same contour

length which is equal to the root-mean-square chain length

r0 Z l
ffiffiffiffiffiffi
NF

p
, where NF defines the number of links in a chain of

length l. These chains occupy average positions at the corners

A, B, and C of an undeformed base triangle with edge lengths

a0 that bounds the trihedral angle and that could initially meet,

as shown in Fig. 2, at the point G, the centroid of the

tetrahedron base located at a0(1/3,1/3,1/3) which is allowed to

take up all possible positions [3].

Note, that our proposed model differs from that of the four-

chain average tetrahedron network model proposed by Flory

and Rehner [1] in which four chains extending from the corners

of an average tetrahedron network meet at its central junction

point that is allowed to take up all possible positions or from



A. Elı́as-Zúñiga / Polymer 47 (2006) 907–914 909
the simple tetrahedron model proposed by Kloczkowski,

Erman and Mark to study the effect of non-Gaussian chains

fluctuation of junctions in bimodal networks [14].

We also make the following initial assumptions: (1) the

equilateral tetrahedron is inside a regular cube and that its

edges remain align with the principal stretch directions, (2) the

corners of the equilateral tetrahedron as well as the junction

point G are subjected to affine deformation. Thus, from the

geometry of the equilateral tetrahedron shown in Fig. 2, the

chain end-to-end vector length in its undeformed state is

related to the tetrahedron initial dimensions by

r0 Z l
ffiffiffiffiffiffi
NF

p
Z a0

ffiffiffi
2

3

r
; (7)

and hence,

a0 Z l

ffiffiffiffiffiffiffiffiffi
3NF

2

r
(8)

If the tetrahedron shown in Fig. 2 is stretched by l1i, l2j, l3k

in the principal directions so that its edges measure,

respectively, a0l1, a0l2, and a0l3 in the x1, x2, and x3 directions

as illustrated in Fig. 3, then G moves to its mean or equilibrium

position G 0 of coordinates (x1cl1,x2cl2,x3cl3), where

(x1c,x2c,x3c) represent the position coordinates of the junction

point in the tetrahedron. Their values are determined from

equilibrium of chain forces at the network junction point G 0.

It is seen in Fig. 3, that the chain vectors from the

equilibrium point G 0 to the corners A 0, B 0, and C 0 may be

written down, respectively, as

rGA0 Z a0½l1ð1Kx1cÞiKl2x2cjKl3x3ck�; (9)

rGB0 Z a0½Kl1x1ci Cl2ð1Kx2cÞjKl3x3ck�;

rGC 0 Z a0½Kl1x1ciKl2x2cj Cl3ð1Kx3cÞk�;

Thus, the magnitude of each chain vector is given by

rGA0 Z a0½l
2
1ð1Kx1cÞ

2 Cl2
2x2

2c Cl2
3x2

3c�
1=2; (10)

rGB0 Z a0½l
2
1x2

1c Cl2
2ð1Kx2cÞ

2 Cl2
3x2

3c�
1=2;
Fig. 3. Deformed equilateral tetrahedral cell with the junction point taking up

all possible positions.
rGC 0 Z a0½l
2
1x2

1c Cl2
2x2

2c Cl2
3ð1Kx3cÞ

2�1=2:

Since the chain stretch is obtained by dividing its current length

by its initial length, we obtain upon substitution of Eq. (8) into

Eq. (10), the current relative chain stretches:

lkr h
lkchain

ll

Z

ffiffiffiffiffiffiffiffiffi
3

2NF

s
½l2

kð1KxkcÞ
2 Cl2

i x2
ic Cl2

j x2
jc�

1=2; (11)

isjskZ1, 2, 3 (no sum), where ll h
ffiffiffiffiffiffi
NF

p
denotes the

ultimate, fully extended chain stretch. Note that the position

coordinates (x1c,x2c,x3c) of G 0 are to be found by using an

iterative numerical scheme for each stretch increment that

satisfies the condition of no net forces on the junction point. In

the present article, we also have assumed that the correspond-

ing elastic tension force in each non-Gaussian chain may be

computed from

fj Z
kQ

l
bj; (12)

where bjZLK1ðljchain=
ffiffiffiffiffiffi
NF

p
Þ is the inverse Langevin function

defined as LðbÞhcoth bKð1=bÞ [15]. With the help of Fig. 3,

we may write the corresponding equilibrium equations for the

junction point G 0 in the x1, x2, and x3 directions; this givesX
F1 Z 0 :

ð1Kx1cÞ
f1

l1chain

Kx1c

f2

l2chain

Kx1c

f3
l3chain

CC1 Z 0;

(13)

X
F2 Z 0 :

Kx2c

f1
l1chain

C ð1Kx2cÞ
f2

l2chain

Kx2c

f3

l3chain

CC2 Z 0

(14)

X
F3 Z 0 :

Kx3c

f1
l1chain

Kx3c

f2
l2chain

C ð1Kx3cÞ
f3

l3chain

CC3 Z 0;

(15)

where C1, C2, and C3 are the rectangular components of the

diffusion, friction, internal viscosity and other forces that are

acting on the chains [16,17]. To simplify our analysis, we make

the assumption that the magnitude of these unknown forces is

the same, i.e.

C1 Z C2 Z C3 Z C: (16)

To eliminate C from the above equations, we subtract Eq. (14)

from Eq. (13), Eq. (15) from Eq. (13), and (15) from Eq. (14) to

obtain the following equilibrium equations

ð1Kx1c Cx2cÞ
f1

l1chain

Kð1 Cx1cKx2cÞ
f2

l2chain

C ðx2cKx1cÞ
f3

l3chain

Z 0; ð17Þ
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ð1Kx1c Cx3cÞ
f1

l1chain

Kðx1c Kx3Þ
f2

l2chain

Kð1 Cx1cKx3cÞ
f3

l3chain

Z 0; ð18Þ

f Kðx2c Kx3cÞ
f1

l1chain

C ð1Kx2c Cx3cÞ
f2

l2chain

Kð1 Cx2cKx3cÞ
f3

l3chain

Z 0 ð19Þ

The coordinates of the equilibrium position of the central

junction point G 0 can be found by solving numerically Eqs.

(17)–(19). Once the values of (x1c,x2c,x3c) are known, then the

network work of deformation of the equilateral tetrahedron cell

may be determined by adding the corresponding entropy

contribution of each chain. Therefore, substitution of Eq. (11)

into Eq. (4) yields the strain energy function per unit volume in

the principal reference system:

Wðl1; l2; l3Þ Z
nkQ

3
NF

X3

kZ1

bklkr C ln
bk

sinh bk

� �
Kc� (20)

where bk ZLK1ðlkrÞ, for kZ1, 2, 3 and c* is a constant chosen

so that W(1,1,1)Z0. For convenience, we write again Eq. (6) to

recall that the principal values of Cauchy stresses are given by

Tk ZKp Clk

vW

vlk

; k Z 1; 2; 3 ðno sumÞ (21)

Use of Eq. (20) in Eq. (21) yields the following stress

components:

Tk ZKp Cm0l2
kfkðl1r; l2r; l3rÞ; k Z 1; 2; 3 ðno sumÞ (22)

wherein, by definition,

fkðl1r; l2r; l3rÞh

ffiffiffiffiffiffi
NF

p

2

bk

lkr

ð1KxkcÞ
2 C

bi

lir

C
bj

ljr

� �
x2

kc

� �
(23)

isjskZ1, 2, 3 (no sum), and the relative stretches are defined

in Eq. (11). Eliminating the pressure from Eq. (22), yields

TjKTk Z m0ðl
2
j fjðl1r; l2r; l3rÞKl

2
kfkðl1r; l2r; l3rÞÞ (24)

where, in general, jskZ1, 2, 3 (no sum) and m0ZnkQ is the

material shear modulus in the undeformed state. Finally, with

the aid of (11) and using Eq. (23) in Eq. (24) delivers the virgin

material stress difference for our equilateral tetrahedron

network model:

T1 KT2 Z
m0

ffiffiffiffiffiffi
NF

p

2

b1

l1r

ðl2
1ð1Kx1cÞ

2Kl2
2x2

2cÞ

�

C
b2

l2r

ðl2
1x2

1cKl2
2ð1Kx2cÞ

2ÞC
b3

l3r

ðl2
1x2

1cKl2
2x2

2cÞ

�
(25)
4. An average-stretch non-Gaussian full-network model

To assess stress–stretch responses from our derived network

model described by Eq. (24), we shall compare predicted
results with the Arruda–Boyce constitutive equation for an

average stretch, full-network of arbitrarily oriented molecular

chains since this model is the most accurate of the non-

Gaussian network models in fitting experimental data for

different deformation states [4].

4.1. The Arruda–Boyce model

In this section, we briefly review the Arruda–Boyce model

that is described by an average-stretch, full-network model for

homogeneous non-Gaussian networks of randomly oriented

molecular chains. According to Beatty [9], the constitutive

Cauchy stress–stretch equation for the Arruda–Boyce material

model is given by

T ZKpI CaðI1ÞB (26)

where BZdiag½l2
1; l

2
2; l

2
3� in the principal reference system of

the deformed state and the material response function aðI1Þ is

defined by:

aðI1Þh
m0b8

3lr

(27)

where b8ZLK1ðlrÞ and lr is given by

lr Z
lch

lL

Z

ffiffiffiffiffiffiffiffi
I1

3N8

s
(28)

where lL Z
ffiffiffiffiffiffi
N8

p
represents the fully extended chain-stretch

and N8 is the eight-chain number of links. We can also obtained

from Eq. (26) the following general relation for the difference

of principal Cauchy stresses as a functions of the principal

stretches for the Arruda–Boyce non-Gaussian network model:

TjKTk Z aðI1Þðl
2
j Kl2

kÞ; jsk Z 1; 2; 3 (29)

Note that for an incompressible material, the engineering stress

s is related to the Cauchy stress by

s Z TFK1 (30)
5. Homogeneous deformations

Here, we first recall some basic definitions of homogeneous

deformations and then we provide the corresponding stress–

stretch relations for simple extension and compression,

equibiaxial extension, pure shear and plain strain compression

by using Eqs. (24) and (29) in conjunction with Eq. (30).

5.1. Basic definitions

Let us consider a material particle at the place X in an

initially undeformed reference configuration of a body. The

particle at X when subjected to a prescribed deformation, has a

new position x in the resulting deformed configuration of the

body. Then, a pure homogeneous deformation is described by

x1 Z l1X1; x2 Z l2X2; x3 Z l3X3 (31)
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in which lk are the constant principal stretches and xk and Xk

are the respective coordinates of x and X in a common

rectangular Cartesian frame 4Z{O; ek} with origin O and

orthonormal basis ek. For a volume preserving deformation, we

require that

det F Z l1l2l3 Z 1 (32)

for all deformations, with the deformation gradient tensor

given by FZ vx/vX. In the undistorted state FZI, the identity

tensor.
5.2. Simple extension and compression

For a simple extension in the e1 direction, we take the

principal stretches as l1Zl, l2Zl3Zl1/2. The corresponding

uniaxial stress is T1ZT. In this case T2ZT3Z0.

Recalling Eq. (11) for the current relative chain-stretch

components, we thus find from Eq. (24) the following uniaxial

engineering stress–stretch relation for the equilateral tetra-

hedron network model:

sF Z
m0

ffiffiffiffiffiffi
NF

p

2

b1

l1r

lð1Kx1cÞ
2K

1

l2
x2

2c

� ��

C
b2

l2r

lx2
1c K

1

l2
ð1Kx2cÞ

2

� �
C

b3

l3r

lx2
1cK

1

l2
x2

2c

� ��
(33)

wherein bk ZLK1ðlkrÞ, for kZ1, 2, 3.

For the Arruda–Boyce material network model, we can

obtain by using Eq. (29) together with Eqs. (27) and (28) the

uniaxial engineering stress–stretch relation:

ðsÞ8�ch Z
m0bðlKlK2Þ

3lr

(34)

in which bZLK1ðlrÞ and

lr Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3N8

l2 C
2

l

� �s
(35)
5.3. Equibiaxial extension and balloon inflation

For an equibiaxial homogeneous deformation, we know that

l1Zl2Zl, and l3ZlK2 satisfies Eq. (32). Then, the principal

engineering stress components are given by s1Zs2ZsZT/l

and s3Z0. Thus, the equibiaxial engineering stress for our

derived equilateral tetrahedron network model is described by

sF Z
m0

ffiffiffiffiffiffi
NF

p

2

b1

l1r

lð1Kx1cÞ
2 KlK5x2

3cÞ

�

C
b3

l3r

ðlx2
1cKlK5ð1Kx3cÞ

2Þ

�
C

b2

l2r

ðlx2
1cKlK5x2

3cÞ�

(36)

where bk ZLK1ðlkrÞ, for kZ1, 2, 3.

The equibiaxial engineering stress for the Arruda–Boyce

model can be readily shown to be given by
ðsÞ8�ch Z
m0b

3lr

ðlKlK5Þ (37)

Here bZLK1ðlrÞ and the relative stretch is

lr Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3N8

2l2 C
1

l4

� �s
(38)
5.4. Pure shear or plane strain compression

This homogeneous isochoric deformation is described by

Eq. (31) with l1Zl, l2Z1, l3ZlK1. Here, the tensile or

compressive engineering stress is s1ZT1/l, the restraining

stress is s2ZT2, and the free surface stress is s3Z0. Then, the

compressive engineering stress in a pure shear of the

equilateral tetrahedron model is given by the following

equation

sF Z
m0

ffiffiffiffiffiffi
NF

p

2

b1

l1r

ðlð1Kx1cÞ
2KlK3x2

3cÞ

�

C
b3

l3r

ðlx2
1cKlK3ð1Kx3cÞ

2ÞC
b2

l2r

ðlx2
1cKlK3x2

3cÞ

�
ð39Þ

where bk ZLK1ðlkrÞ, for kZ1, 2, 3. The corresponding

constitutive compressive engineering stress equation for

the Arruda–Boyce network material model may be

obtained by using Eq. (29) in conjunction with a pure shear

or plane strain compression homogeneous deformation, this

yields

s8�ch Z
m0b

3lr

ðlKlK3Þ (40)

where bZLK1ðlrÞ and the relative stretch Eq. (28) is given by

lr Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3N8

ðl2 ClK2 C1Þ

s
(41)

It is important to emphasize that in all the above equations the

inverse Langevin functions bZLK1ðlrÞ and bk ZLK1ðlkrÞ can

be replaced by the empirical estimates

b Z LK1ðlrÞz
3lr

1Kl3
r

; bk Z LK1ðlkrÞz
3lkr

1Kl3
kr

(42)

that exhibits very good graphical comparisons [18].

6. Numerical results

Our objective from here onward is to assess the accuracy of

our equilateral tetrahedron model described by Eq. (24) when

compared to the Arruda–Boyce constitutive Eq. (26) for

different deformation states. Also, we shall compare some

predicted results with experimental data by Treloar [15],

Kawabata and Kawai [19], James, Green and Simpson [20],

and Arruda and Boyce [4]. Fig. 4 illustrates the theoretical

predictions of the equilateral tetrahedron and Arruda–Boyce

network models as well as the engineering stress–stretch data

for simple extension, pure shear, and equibiaxial extension

obtained by Treloar [15,21]. Here, we chose to fit Treloar’s



Fig. 4. Stress–stretch behavior for simple extension, equibiaxial extension, and

pure shear. Experimental data is taken from Treloar for which the material

parameter values are: nkQZ0.27 MPa, N8Z25.12, and NFZ30.25.
Fig. 6. Stress–stretch behavior for equibiaxial extension of our phenomen-

ological model. Experimental data is taken from Treloar for which the material

parameter values are: nkQZ0.27 MPa, N8Z25.12, and NFZ30.25.
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simple extension data with the following parameter values:

nkQZ0.27 MPa, N8Z25.12, and NFZ30.25. It is seen in Fig. 4

that numerical results obtained from the Arruda–Boyce and the

equilateral tetrahedron model are strikingly identical, although

the former is stiffer in equibiaxial extension at large stretch

values. We have plotted in Fig. 5 for each deformation state the

displacement of the equilibrium position of G 0 measured from

the origin O 0 of the coordinate system shown in Fig. 3. The

coordinates that describe the equilibrium position of G 0 were

obtained from Eqs. (17)–(19) by using a numerical algorithm

provided by the Mathematica symbolic package. During the

application of this algorithm, we have used the following

starting coordinate values (x1c, x2c, x3c)Z(1/3,1/3,1/3). If

different starting values are used in the Mathematica numerical

algorithm solution, we may obtain other roots for (x1c,x2c,x3c)
Fig. 5. Displacement of the equilibrium position of G0 measured from the origin

O 0 for simple extension, equibiaxial extension, and pure shear. The material

parameter values are: nkQZ0.27 MPa and NFZ30.25.
that satisfy the equilibrium Eqs. (17)–(19). For instance, if we

take the starting values of ðx1c; x2c; x3cÞZ ð1=
ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p
Þ

for the equibiaxial deformation state, while keeping constant

the material parameter values, the engineering stress–stretch

values obtained by our equilateral tetrahedron model are

almost identical to Treloar’s experimental data as shown in

Fig. 6. From the results of our numerical simulations it appears

unrealistic to have relative chain stretch values determined from

Eq. (11) that are different for equibiaxial and simple extension

deformation states when lZ1 however, it is commonly known

that rubber-like material response depends on the direction of

stretching [21–23]. In spite of this, the assumption that G 0 is

initially located at the point ðx1c; x2c; x3cÞZ ð1=
ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p
Þ

is inconsistent with our desire that G 0 should be initially located

at the centroid of the equilateral tetrahedron base. Therefore,

when we look at the quantitative equibiaxial extension behavior

of our proposed model by considering that the initial equilibrium

position of the mean point G 0 is not at the centroid of the

tetrahedron base, we may regard it as a phenomenological

model. In the comparison of theoretical results and experimental

data that follows, we will show that this phenomenological

model also fits well equibiaxial experimental data by Kawabata

and Kawai and experimental results obtained by James, Green

and Simpson. Notice that stress–stretch numerical results for

deformation states that are different from the equibiaxial state

have been computed by considering the starting coordinate

values of (x1c,x2c,x3c)Z(1/3,1/3,1/3).

Fig. 7 illustrates the behavior of the equilateral tetrahedron

and Arruda–Boyce models compared to experimental data

provided by Kawabata and Kawai [19]. The material

parameters are determined by fitting simple extension data.

This gives nkQZ0.3 MPa, N8Z100.11, and NFZ180.25. We

observe in Fig. 7 that theoretical results obtained from both the

Arruda–Boyce and the equilateral tetrahedron models almost

coincide. Furthermore, both models predict well simple

extension data but underestimate pure shear and equibiaxial

deformations. It is also seen in Fig. 7 that our



Fig. 7. Stress–stretch behavior for simple extension, equibiaxial extension, and

pure shear. Experimental data is taken from Kawabata and Kawai for which the

material parameter values are: nkQZ0.3 MPa, N8Z100.11, and NFZ180.25.

Fig. 9. Stress–stretch behavior for simple compression and plane strain

compression. Experimental data is taken from Arruda–Boyce for which the

material parameter values are: nkQZ0.4 MPa, N8Z7.83, and NFZ8.7.
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phenomenological model predicts satisfactorily equibiaxial

extension data.

We now compare our theoretical results with experimental

data obtained by James et al. [20]. Here, we fit simple extension

data with the following material parameter values: nkQZ
0.375 MPa, N8Z23.14, and NFZ30.5. As we may see in Fig. 8,

both models predict well simple extension data but diverge

from equibiaxial experimental data. Notice however, that

results obtained from our phenomenological equilateral model

compare well with equibiaxial experimental data. In Fig. 9, we

now plot experimental results for silicone rubber recorded by

Arruda and Boyce [4] for simple and plane strain compression
Fig. 8. Stress–stretch behavior for simple extension, equibiaxial extension, and

pure shear. Experimental data is taken from James et al. for which the material

parameter values are: nkQZ0.375 MPa, N8Z23.14, and NFZ30.5.
homogeneous deformations. We chose to fit Arruda–Boyce

simple compression data with the following parameter values:

nkQZ0.4 MPa, N8Z7.83, and NFZ8.7. We note from Fig. 9,

that both models compare well with experimental results but

now the equilateral tetrahedron model predicts a stiffer

response at larger stretches and it virtually coincides with

experimental data.

7. Conclusions

A constitutive equilateral tetrahedron network model based

on non-Gaussian statistical theory has been proposed in an

attempt to predict available experimental data. The equilateral

tetrahedron model described by the simple constitutive

relations (24) can be easily used to predict with good accuracy

the physical response of incompressible rubber-like materials

for different deformation states since it successfully accounts

for the state of deformation dependence by only using two

materials parameters, the shear modulus nkQ, and the model

specific molecular chain number of links NF. This model when

compare with the Arruda–Boyce model tends to underestimate

at large stretch values the stiffness of the network in equibiaxial

deformation but in the case of plane strain compression, it

virtually matches experimental data. We believe that the

improvement achieved in this deformation state lies in the

location of the junction point during deformation which is

determined from equilibrium of chain forces that must satisfied

the equilibrium condition of no net forces.

We have also shown that theoretical results obtained from

our proposed phenomenological equilateral tetrahedron model

agree well with equibiaxial experimental data by assuming that

in this deformation state the equilibrium position of G 0 is

initially located at the point ðx1c; x2c; x3cÞZ ð1=
ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p
Þ.

Finally, our proposed model can be used to derive stress–

stretch constitutive equations by considering the effect of non-

Gaussian chains on fluctuations of junctions in bimodal

networks by following a procedure similar to the one describe
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in [14]. The results of this new work will be reported in a

subsequent paper elsewhere.
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